If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying sin2(x) + -1sin2(4x) = sin2(8x) + sin2(10x) Multiply in2s * x in2sx + -1sin2(4x) = sin2(8x) + sin2(10x) Remove parenthesis around (4x) in2sx + -1in2s * 4x = sin2(8x) + sin2(10x) Reorder the terms for easier multiplication: in2sx + -1 * 4in2s * x = sin2(8x) + sin2(10x) Multiply -1 * 4 in2sx + -4in2s * x = sin2(8x) + sin2(10x) Multiply in2s * x in2sx + -4in2sx = sin2(8x) + sin2(10x) Combine like terms: in2sx + -4in2sx = -3in2sx -3in2sx = sin2(8x) + sin2(10x) Remove parenthesis around (8x) -3in2sx = in2s * 8x + sin2(10x) Reorder the terms for easier multiplication: -3in2sx = 8in2s * x + sin2(10x) Multiply in2s * x -3in2sx = 8in2sx + sin2(10x) Remove parenthesis around (10x) -3in2sx = 8in2sx + in2s * 10x Reorder the terms for easier multiplication: -3in2sx = 8in2sx + 10in2s * x Multiply in2s * x -3in2sx = 8in2sx + 10in2sx Combine like terms: 8in2sx + 10in2sx = 18in2sx -3in2sx = 18in2sx Solving -3in2sx = 18in2sx Solving for variable 'i'. Move all terms containing i to the left, all other terms to the right. Add '-18in2sx' to each side of the equation. -3in2sx + -18in2sx = 18in2sx + -18in2sx Combine like terms: -3in2sx + -18in2sx = -21in2sx -21in2sx = 18in2sx + -18in2sx Combine like terms: 18in2sx + -18in2sx = 0 -21in2sx = 0 Divide each side by '-21'. in2sx = 0 Simplifying in2sx = 0 The solution to this equation could not be determined.
| 2x=-4+16 | | x-2y=2x+3y-5 | | 10-3x=6x+14 | | 4x+15=3+7x-6 | | 5m-3=4m-5 | | 2x+1=3(2-x) | | 6x-10=5x-7 | | 7-6x-4=-42+4x-15 | | 8a^2+35a-43=0 | | 7-6x-4=42+4x-15 | | -9x-15=3x+9 | | 5e+13=41 | | 3X^2+3=X^2+6+2x^2 | | 4*(y+6)+3*(7-4y)=33 | | 2*(4x-3)-3*(1-2x)=12 | | 12-1-x=12 | | 0.75p=p+180 | | X+6y+-36=13x+-444 | | 12x+6y-5=0 | | (x+7)(2x-9)=0 | | (x-9)+(x+7)=0 | | x^2-ax=9 | | 9x^4-24x^3-2x^2+24x+9=0 | | 3ln(x)+7=12 | | (6-x)(8x+2)=0 | | x^2+x+4+y^2=0 | | x^4-4x^3+4x^2-16x-12=0 | | 7+12y^3-28y^2-3y=x | | -14x-13=11-8x | | 4x+22=5x+28 | | 3x^2-2mx+3=0 | | -4k^2-4k+4=0 |